
Detecting JavaScript Errors and Code Smells

with Static Analysis

April 2018 | Ver. 1.0

2 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

Contents

0. Executive Summary

1. Introduction

2. How Static Analysis Works

3. JavaScript Errors with Static Analysis Tool

4. Conclusion

JavaScript is the most commonly used programming language and has been

at the top of the GitHub annual highlights. Its open source ecosystem will be

much bigger as it is widely applied to developing server, mobile, and desktop

applications beyond just websites.

While code bases written in JavaScript are larger, debugging and managing

the code bases are getting more difficult especially due to the dynamic

features of JavaScript language. But you can significantly reduce this quality

cost by catching code defects at the earlier stage of the development cycle.

Static analysis tools come into play at this stage.

To help JavaScript folks find static analysis tools helpful, we rummaged our

database regarding run-time errors and code smells found by our JavaScript

static analysis tool. It was gathered by analyzing code from thousands of

public JavaScript and TypeScript projects on GitHub.

This report describes how static analysis tools work and shows some types of

problems that static analysis tools can prevent.

3 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

DeepScan is a static analysis tool designed to help organizations achieve better code

quality for the release of applications written in JavaScript. We engineered it to detect

code defects more precisely and have collected code defects from thousands of open

source projects on GitHub.

This report provides some of the ways static analysis tools can address the troubles

arrived with an increasing use of JavaScript. Sections will describe how static analysis

tools work and show examples of errors and poor code quality collected.

The results offer a number of findings:

Static analysis tools can detect code defects that linters cannot.

By adopting static analysis tools, you can prevent run-time errors and poor code

quality at the earlier stage of the development cycle.

Static analysis tools can help JavaScript developers and testers upgrade their

language skills by directly educating them about questionable coding practices.

With consistency and faster speed, automated static analysis tools can detect code

defects human developers might have missed.

0. Executive Summary

•

•

•

•

4 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

1. Introduction

JavaScript to date has become popular language in the world and it, more especially

in open source ecosystems, has been on the top of the most popular languages on

GitHub since 20161). Also, JavaScript has been supposed to be the holy grail of cross-

platform languages like developing server, mobile, and desktop applications beyond

just websites.

While various and fragmented technologies arise and code bases written in JavaScript

are larger, the quality cost for debugging and managing code bases is dramatically

increasing. The fact that JavaScript does not have grumbling compilers instantly

checking code problems makes this worse. There is a research that TypeScript or Flow

which supports type checking in JavaScript can prevent 15 percent of the bugs2).

Static analysis tools come into play at this stage. A research says the relative cost

to repair defects at post-product release is 6 times more than at the coding/unit

test stage3). Static analysis tools have significantly reduced the quality cost for the

languages like C, C++, and Java by catching code defects at the earlier stage of the

development cycle.

Here is a question for you – Why not apply static analysis tools for JavaScript?

Once you have static analysis tools for JavaScript, the tools will help solve the troubles

of JavaScript. Although JavaScript is known to be difficult to apply static analysis due to

its weak type system and dynamic behavior, fortunately, static analysis tools emerging

these days are overcoming such issues.

This report describes some of the ways how static analysis tools can help JavaScript

folks. Section 2 describes how static analysis tools work. Section 3 shows examples of

errors and poor code quality (aka code smells) found by the tool. In its conclusion, this

report provides some recommendations for choosing a static analysis tool.

1) “The State of the Octoverse 2017”, 2017, (GitHub link: https://octoverse.github.com/)

2) “To Type or Not to Type: Quantifying Detectable Bugs in JavaScript”, Zheng Gao, May 2017,

 (http://ttendency.cs.ucl.ac.uk/projects/type_study/documents/type_study.pdf)

3) “The Economic Impacts of Inadequate Infrastructure for Software Testing”, 2002, NIST

 (https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf)

https://octoverse.github.com/
http://ttendency.cs.ucl.ac.uk/projects/type_study/documents/type_study.pdf
https://www.nist.gov/sites/default/files/documents/director/planning/report02-3.pdf

5 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

2. How Static Analysis Works

This section first explains the necessary notions to understand static analysis tools and

how they come to play together.

Static analysis tools work much like compilers. Like a compiler, they parse the source

code to generate the program's abstract syntax tree (AST) and a symbol table. They

convert the AST to an intermediate representation (IR) and construct the control-flow

graph (CFG) from the IR.

Figure 1 - An Architecture of Static Analysis Tool

Figure 2 - An Example of IR (Intermediate Representation)

JavaScript Code Intermediate Representation

function foo(x) {
 var type = "undefind";
 if (typeof x === type) {
 type = = "number";
 }

[1] assert(typeof x<>1 === type<>3)

typeof x<>1 -> Str
x<>1 -> *
type<>3 -> "undefind"
typeof x<>1 === type<>3 -> false

JS File

Value Analyzer tracks the execution flow of a variable

1

2

1

2

3

3

Parser

Abstract Syntax
Tree

Intermediate
Representation

Access Path
Analyzer

Call Graph
Analyzer

Value Analyzer Closure Analyzer

Value Analyzer

Local Analysis
(Per Function)

Bug Checker

Bug Report

Global Analysis
(Per File)

This is false!

Control Flow
Graphplugin

ESLINT JSHINT

if (fromArgs) {
 // setting date by clicking
 this.setValue();
 this.element.change();
} else if (this.dates.length) {
 // setting date by typing
 if (oldDates !== this.dates && fromArgs) {
 this._trigger(‘changeDate’);
 this.element.change();
 }
}

Check ‘fromArgs’ variable in if statement

The value of ‘fromArgs’ variable is false in else if block

Compare it in the && condition

 Causing the block to be skipped always
 (Implies a defect in the function of changing a date)

6 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

Static analysis tools leverage the AST and CFG to detect specific properties or

questionable coding patterns. Simple analysis tools known as linters (such as JSHint

or ESLint) constructs only the AST and try to find syntactic and stylistic problems by

matching the pattern on AST (e.g., the use of ‘with’ statement).

On the other hand, static analysis tools construct up to the CFG in addition to the

AST and look for problems along the execution flow of the whole program (aka, data-

flow analysis). They follow the abstract state of the program like the current value

of a variable or possible condition of a conditional flow, consequently searching for

problems like NULL pointer dereference or invalid function call among modules.

7 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

3. JavaScript Errors with Static Analysis Tool

4) “Top 10 JavaScript errors from 1000+ projects (and how to avoid them)”, 2017, Rollbar

 (https://rollbar.com/blog/top-10-javascript-errors/)

The main discussion here is to show different types of code defects what static analysis

tools can prevent.

Recently, Rollbar (a service that provides real-time error monitoring for web application)

announced top 10 JavaScript errors they’ve collected4). These run-time errors were

caught in the production websites. If static analysis tools can detect these errors

earlier in the development stage, the tools can reduce the quality cost and improve

the user experience.

[Figure 3] is an example of RangeError thrown when an out-of-range value is passed

to a function. For example, 'Number.toFixed()' accepts an argument from 0 to 20, so

'Number.toFixed(25)' in the below throws a RangeError.

These errors can be detected by static analysis tools and linters by querying the AST

whether the function to be called is ‘toFixed’ and its argument. But when the argument

is a variable than a constant, only static analysis tools can do the trick because they

keep track of the state of a variable.

Related with the Common Weakness Enumeration (CWE) - CWE-628 “Function

Call with Incorrectly Specified Arguments” is about incorrect arguments which

might lead to incorrect behavior and resultant weaknesses.

Figure 3 - An Example of RangeError (from Rollbar)

RangeError

var num = 2.555555;
document.writeln(num.toExponential(-2)); //range error!

num = 2.9999;
document.writeln(num.toFixed(25)); //range error!

num = 2.3456;
document.writeln(num.toPrecision(22)); //range error!

https://rollbar.com/blog/top-10-javascript-errors/

8 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

Figure 4 - An Example of TypeError (from Rollbar)

On line 9 of [Figure 4], ‘testFunction()’ is called without any argument. The ‘testArray’

argument has an undefined value, so a TypeError is thrown when accessing its ‘length’

property in the loop.

Static analysis tools can solve this problem. They know the semantics of a function

and the call site of it. When the argument is missing and its property is accessed in the

function, static analysis tools can ring an alarm with the cause (missing argument at

line 9) and highlight the error point (NULL object accessed at line 4).

The example on the right column of [Figure 4] is a nutshell pattern of NULL pointer.

As of this, also, static analysis tools recognize the variable ‘test’ has an undefined

value originated from the assignment at line 1. So they can detect a NULL pointer

dereference problem at line 2.

Related with the CWE - CWE-476 “NULL Pointer Dereference” is about when

the application dereferences a pointer that is NULL, typically causing a crash.

[Figure 5] shows another pattern of null pointer.

Another error to be shown is a TypeError caused by referencing a NULL object.

TypeError TypeError

1 var testArray = ["Test"];
2
3 function testFunction(testArray) {
4 for (var i = 0; i < testArray.length; i++) {
5 console.log(testArray[i]);
6 }
7 }
8
9 testFunction();

1 var test = undefined;
2 test.value = 0;

Figure 5 - An Example of Insufficient null Check (from Apache Ambari)

TypeError

1 function loadRecommendationsSuccess(data) {
2 if (!data) {
3 console.warn('error while loading default config values');
4 }
5 this._saveRecommendedValues(data);
6 var configObject = data.resources[0].configurations;

9 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

On line 2, the argument ‘data’ is checked for NULL. But execution just doesn’t stop, so

an undefined value is saved and, finally, a TypeError is thrown when accessing ‘data’

at line 6.

Static analysis tools can help out by detecting whether a variable is consistently

checked for NULL in all its usage.

Now, let’s see our survey gathered from analyzing thousands of public JavaScript and

TypeScript projects on GitHub regarding run-time errors and code quality.

Here are the top 10 defects we’ve found:

Figure 6 - Number of Defects Detected

Assigned variable is not used

Function or variable is redeclared

Local variable or function is not used

Result of condition check is always same

Imported binding is not used

Result of expression is not used

Undefined object can be accessed

Uninitialized local variable is used

Required module is not used

Execution of switch/case does not break

Number of defects

20,00015,00010,0005,0000

Figure 7 - Defect Types Detected

Others (20%)

Undefined object can be accessed (4%)

Result of expression is not used (6%)

Imported binding is not used (9%)

Result of condition check is always same (9%)

Uninitialized local variable is used (2%)
Required module is not used (2%)

Execution of switch/case does... (2%)

Assigned variable is not used (25%)

Function or variable is... (12%)

Local variable or function is not... (9%)

10 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

Many of those are related with unusables like unused or uninitialized local variables

and NULL pointer.

Let’s dig deeper into each case.

Figure 8 - Example of Unused Variables

Duplicated Variables or Functions

Unused Variables

Declared but unused variables are usually overlooked by developers, but these are

not good for future maintenance of code bases (even to the author himself).

This seemingly “trivial” defect can sometimes cause undesired consequences. Below

shows an assignment (at line 3) ignored by the subsequent assignment (at line 4),

causing the desired parameter ‘userName’ is not appended.

As of duplicate functions, it might imply the developer does not know JavaScript

language and/or its new features well, especially when he or she is accustomed to

traditional languages. (JavaScript does not support function overloading.)

Although this code defect does not cause an error, it’s still in line with the best practices

to remove duplications. Duplicated variables or functions increase a technical debt to

the development team by confusing which ones are actually used in the code.

Value is assigned but ignored

1 function getUrl(url) {
2 var target;
3 target = url + "userName" + userName;
4 target = url.replace(/\/|\=|\:|\s/gi,"");
5 return target;
6 }

Uninitialized Variables

The use of uninitialized variables is probably due to the lack of understanding for the

‘var’ variable scope and the function hoisting.

In the below, the ‘html5’ variables are declared at line 2 and 5. Two variables are

distinct because ‘var’ variable has a function scope, but only the variable at line 5 is

initialized and the return value coming from line 2 has an undefined value. This would

cause an unexpected behavior to the caller.

11 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

Incautious NULL Checking

NULL checking implies that a TypeError can occur. This is much probable especially

in exceptional use cases (the else branch of the code). When unit tests don’t come

with, developers usually test only for the main use cases (the if branch of the code)

or expected argument values. This incurs risks to the user experiences imposing much

various use cases.

In the below, the variable ‘match’ becomes NULL in the else branch at line 9. When

it comes at line 12, it is dereferenced and a TypeError throws. This would almost

certainly have very undesired consequences for the user experience.

Figure 9 - An Example of Uninitialized Variables

Use of uninitialized variable

1 define(['isSVG'], function(isSVG) {
2 var html5;
3 if (!isSVG) {
4 ;(function(window, document) {
5 var html5 = {
6 };
7
8 window.html5 = html5;
9 }(typeof window !== 'undefined' ? window : this, document));
10 }
11 return html5;
12 });

Figure 10 - An Example of Incautious NULL Checking

Access null object in else branch

1 function _getMarkerAtDocumentPos(editor, pos, preferParent, markCache) {
2 var marks, match;
3
4 ...
5 if (marks.length > 1) {
6 match = marks[marks.length - 2];
7 } else {
8 // We must be outside the root, so there's no containing tag.
9 match = null;
10 }
11
12 return match.mark;
13 }

12 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

Also notable is the fact that above examples and statistics are from the code committed

to the repository after the final reviews.

Unlike the human developers affected by their emotions and conditions, static

analysis tools can find problems in consistent and automatic manner with faster

speed. Automated tools can analyze above 130,000 lines of code within fewer than 30

minutes5).

Also, the tools supporting data-flow analysis can provide an accurate point of the

cause for a defect, which can help developers make correction quickly and easily.

For example in [Figure 10], the tool can suggest a NULL pointer and its cause in a

straightforward manner like:

Variable 'match' has a null value originated from assignment 'match = null'

at line 9. But its property is accessed at this point.

To further help your understanding let’s take a statistic about “time to fix”.

It was calculated as an average from when the defect is detected first to when it’s

eliminated by the fix (correcting, removing, or triaging).

5) “Give Your Defects Some Static Using Automated Static Analyzers To Debug Your Code”,

 Gregory M. Pope, William Oliver, June 2008, Better Software Magazine

 (https://www.stickyminds.com/better-software-magazine/give-your-defects-some-static)

Defects regarding unusables or duplications (like unused PropTypes, redeclared ‘var’

variables, the same implementation in if/else branches) seem to be relatively less

serious to the developers.

Figure 11 - Average Time to Fix Defects

Property of primitive value
is accessed 0.2 hours

Defects fixed more quickly Defects fixed more slowly

39 days

0.8 hours 49.3 days

3.1 hours 50.3 days

3.6 hours 50.5 days

4.2 hours 51.9 days

Invalid this in strict mode

Invalid event handling in
React event handler

Strict mode is not declared
properly

Assignment operaator in
conditional statement

Non-function object is called
as a function

Useless React PropTypes
declaration

Function or variable is
redeclared

Same implementation in the
conditional branches

Duplicate case clauses

https://www.stickyminds.com/better-software-magazine/give-your-defects-some-static

13 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

But some obvious run-time errors or mistakes contrary to the intent of the developer

seem to be relatively more serious. Developers are willing to fix the defects such

as NULL pointer, incautious NULL checking, misuse of strict mode, incorrect event

handling in React (React has its own event system rather than DOM), and assignment

operator in conditional statement6).

From this finding, we know static analysis tools cannot help and/or educate developers

until the tools can find defects implying meaningful impacts in run-time and code

quality. Only static analysis tools which understand a data flow of the whole JavaScript

program following actual executions will help organizations to improve the development

team’s productivity and satisfy the return on investment.

6) “This is why code reviews are a good thing”,

 (https://www.reddit.com/r/ProgrammerHumor/comments/4x26u3/this_is_why_code_reviews_are_a_

 good_thing/)

https://www.reddit.com/r/ProgrammerHumor/comments/4x26u3/this_is_why_code_reviews_are_a_good_thing/
https://www.reddit.com/r/ProgrammerHumor/comments/4x26u3/this_is_why_code_reviews_are_a_good_thing/

14 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

This report shows that static analysis tools can help detect JavaScript code defects

effectively and efficiently. In particular:

Inconsistent NULL checking: Implies run-time errors, especially for exceptional

cases, or incautious coding of the author.

Unusables and/or duplications: Implies technical debt with maintainability.

Static analysis tools engineered to understand the whole JavaScript program can:

Detect code defects that linters cannot.

Prevent run-time errors and poor code quality at the earlier stage of the

development cycle.

Help JavaScript developers and testers upgrade their language skills by directly

educating them about questionable coding practices.

Detect code defects human developers might have missed. Note that those

examples from Section 3 are about the code committed to the repository after

the final reviews. Peer review is very useful but should be supplemented by an

automated tool with consistency and faster speed because a human cannot easily

get an understanding of the whole program.

To further help your adoption of JavaScript static analysis tools, the following checklist

provides a few of recommendations:

4. Conclusion

•

•

•

•

•

•

Data-flow analysis

It should be aware of data flows in the module and across modules. As the code

bases grow larger and modules are getting much more divided, this analysis capability

becomes more important.

Lower false alarm rate

Once developers feel the defects found are false positives (claiming the code is a

defect when it is actually not), they will not adopt it. So it should maintain low false

alarm rate while helping to prevent true problems.

Up-to-dateness

The JavaScript ecosystems change very fast and actively accommodate the changes.

The tool needs to support the latest language specifications as well as a wide range of

technologies being used such as TypeScript, Flow, JSX, React, and Vue.js.

15 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

Up-to-dateness

The JavaScript ecosystems change very fast and actively accommodate the changes.

The tool needs to support the latest language specifications as well as a wide range of

technologies being used such as TypeScript, Flow, JSX, React, and Vue.js.

Integration with the development workflow

It can be recognized as a tool to blame the developers themselves. Also in the phase

where the amount of the development is considerable, it can burden them with the

large amount of detection to be corrected and also the wariness of the regression.

Therefore, it should provide some of the ways in which they can apply in their daily

development, e.g., editor plug-ins or command line tools.

In conclusion, static analysis tools for JavaScript ensure reliability for the release of web

applications. It can be incorporated into a development process, a test procedure, or

release criteria. As the adoption of JavaScript has proliferated, its static analysis tools

will much help organizations (development and project management team) improve

their productivity and save the quality cost.

16 White Paper | S-Core

Detecting JavaScript Errors and Code Smells with Static Analysis

DeepScan is a leading static analysis tool for JavaScript code. By its advanced data-

flow analysis and precise rule sets, DeepScan helps you improve your JavaScript

development and releases more reliably – whether you want to write more robust and

clean code, better manage the code quality of your software, or decrease quality cost.

Learn about DeepScan at deepscan.io or support@deepscan.io.

About DeepScan

Kangho is product manager for DeepScan,
was the leader of Tizen Web-based SDK.

Strong interest in JavaScript & user relations.

Kim Kangho (Principal Engineer)

kh5325.kim@samsung.com

This white paper is copyright protected and is the property of S-Core.

Redistribution of this white paper in any way without prior consent is strictly prohibited,

If you have any questions, please contact us at s-core@samsung.com

© 2018 DeepScan. All rights reserved.

http://deepscan.io
mailto:support%40deepscan.io?subject=
mailto:kh5325.kim%40samsung.com?subject=
mailto:s-core%40samsung.com%20?subject=

